Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Here we provide percent contribution of mineral associated (i.e., heavy fraction - HF) and relatively more labile (i.e., light fraction - LF) organic matter through soil profiles and along hillslope catena within sites in the Critical Zone Network (CZNet) Geomicrobiology cluster. Each sample is separated into a HF an a LF utilizing a 1.85 g cm-3 sodium polytungstate (3Na2WO4·9WO3·H2O or Na6 [H2W12O40]) solution. The resultant fractions are run for percent carbon (C) and nitrogen (N) and their associated stable isotopes (δ13C and δ15N) to offer novel insights in soil organic matter processes. Samples that were either too small for analytical analysis or below instrument detection limit are labeled with BDL.more » « less
- 
            Free, publicly-accessible full text available December 8, 2025
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available December 2, 2025
- 
            This data is an on-going collection of soil temperature, soil moisture, soil CO2 concentration, and soil O2 concentration starting in October 2021. We have installed sensors and probes at different soil depths across landscapes in five of the former Critical Zone Observatory locations (see the document named "sensor location"). Soil temperature and moisture are measured using Acclima SDI-12 sensors. Soil CO2 concentrations are measured using Eosense CO2 probes (switching to Vaisala GMP343 and GMP251 in 2023). Soil O2 concentrations are measured using Apogee SO-110-L-10 soil oxygen sensors. This dataset, along with our measurements of soil geomicrobiology and biogeochemistry (available in EarthChem), will help us understand the role of microbes as drivers of Critical Zone biogeochemistry and soil formation.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            A nine-year time series of nutrient cation and anion concentration and efflux from three forested catchments in the Jemez River Basin Critical Zone Observatory (JRB-CZO) in northern New Mexico was used to quantify the pulse of chemical denudation resulting from varying levels stand-replacing wildfire intensity in May-June of 2013. The 3 years of pre-fire and 6 years of postfire data were also probed to shed light on the mechanisms underlying the pulsed release and the subsequent recovery. The initial large solute pulse released to the streams—K+, Ca2+, Mg2+, SO , Cl−, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and total dissolved nitrogen (TDN)—was caused by leaching of hillslope ash deposits during the first monsoon storms post-fire. Debris flow following the wildfire likely redistributed much of the ash-containing sediments along streams and valley bottoms. Sustained elevated solute concentrations observed in the surface waters throughout the post-fire period relative to pre-fire baselines is consistent with these soluble materials being periodically flushed from the soils during wet seasons, i.e., snowmelt and summer monsoons. As microbial mediated reactions and biotic uptake—due to plant regrowth—recover after fire, nutrient ion export (e.g., NO , Cl−and SO ) steadily decreased toward the end of the post fire period, but remained above pre-fire levels, particularly for NO and SO . Surface water concentrations of polyvalent cations (e.g., Al and Fe) decreased significantly after the fire. Our observations suggest that changes in organic matter composition after fire (e.g., increased humification index—HIX) and the presence of pyrogenic carbon may not favor organo-metal complexation and transport. Finally, differences in burn severity among the three watersheds presented in this study, provide insights of the relative impact of solute exports and resilience. The catchments that experienced high burn severity exhibited greater solute fluxes than the less severely burn. Moreover, despite these differences, toward the end of the post-fire period these surface waters presented low and similar solute effluxes, indicating system recovery. Nonetheless, magnitudes and rebounds were solute and process specific. The results of this study highlight the importance of surface and near surface physical and biogeochemical processes on the long-lasting geochemical denudation of forested catchments following wildfires of varying intensities.more » « less
- 
            Abstract Decomposition of soil organic matter (SOM) can be stimulated by fresh organic matter input, a phenomenon known as the ‘priming effect’. Despite its global importance, the relationship of the priming effect to mineral weathering and nutrient release remains unclear. Here we show close linkages between mineral weathering in the critical zone and primed decomposition of SOM. Intensified mineral weathering and rock-derived nutrient release are generally coupled with primed SOM decomposition resulting from “triggered” microbial activity. Fluxes of organic matter products decomposed via priming are linearly correlated with weathering congruency. Weathering congruency influences the formation of organo-mineral associations, thereby modulating the accessibility of organic matter to microbial decomposers and, thus, the priming effect. Our study links weathering with primed SOM decomposition, which plays a key role in controlling soil C dynamics in space and time. These connections represent fundamental links between long-term lithogenic element cycling (= weathering) and rapid turnover of carbon and nutrients (= priming) in soil.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
